Trigonometric Interpolation

In many applications we need to recover periodic function from its data, say \(f(t+T) = f(t), T > 0 \) is the period.

Def: for new integer \(T_n \) is the set of trig polynomial

\[
p(t) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kt + b_k \sin kt) \quad T = 2\pi
\]

with coefficients \(a_j, b_j \).

Theorem: Given 2n+1 distinct points in the interval \([0, 2\pi]\) and 2n+1 values \(y_0, \ldots, y_{2n} \in \mathbb{R} \) there is unique polynomial \(p_n(t) \in T_n \) that interpolates the data, i.e.,

\[
p_n(t_j) = y_j, \quad j = 0, \ldots, 2n
\]

Explicit formula is

\[
p_n(t) = \sum_{k=0}^{2n} y_k T_k(t)
\]

\[
T_k(t) = \prod_{\substack{i=0 \\ i \neq k}}^{2n} \frac{\sin \frac{t-t_i}{2}}{\sin \frac{t_k-t_i}{2}}
\]

Complex setting is much better.
Complex Setting of Trigonometric Interpolation

Define \[E_n(x) = e^{ixn} = (e^i)^n \] trig poly of degree \[n \]
\[e^{ix} = \cos x + i\sin x \]

Define the set
\[T_n = \{ E_0(x), E_1(x), \ldots, E_{N-1}(x) \} \text{ on } [0, 2\pi) \]
real complex

Define the interpolation points (equidistant)
\[x_j = t_j = \frac{2\pi}{N} \cdot j, \quad j = 0, 1, \ldots, N-1 \]

Interpolation Problem: Find \(p(x) \in T_n \),

1. \[p(x) = \sum_{k=0}^{N-1} c_k E_k(x), \quad c_k \in \mathbb{C} \text{ - complex numbers} \]
 such that
2. \[p\left(\frac{2\pi}{N} \cdot j\right) = f\left(\frac{2\pi}{N} \cdot j\right), \quad j = 0, \ldots, N-1 \]

Now we shall derive an explicit formula for the coefficients \(c_k \) of the interpolant (1)
from the interpolation conditions (2).
Some simple facts. Consider $L^2(0, 2\pi)$

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} \, dx$$

$$\|f\|_2 = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 \, dx \right)^{1/2}$$

One can easily see that

$$\langle E_n, E_n \rangle = \delta_{mn} = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$$

Next, we define a discrete inner product

$$\langle f, g \rangle_N = \frac{1}{N} \sum_{j=0}^{N-1} f(x_j) \overline{g(x_j)}$$

and check the properties

(a) $\langle f, f \rangle_N > 0$

(b) $\langle f, g \rangle_N = \overline{\langle g, f \rangle_N}$

One can easily see that $\langle E_n, E_n \rangle_N = \delta_{nm}$. Now introduce the matrix

$$W = \begin{pmatrix} E_0 & E_1(x_0) & \cdots & E_{N-1}(x_0) \\ \vdots & \ddots & \ddots & \vdots \\ E_0(x_{N-1}) & E_1(x_{N-1}) & \cdots & E_{N-1}(x_{N-1}) \end{pmatrix}$$

If $x = e^{\frac{2\pi i}{N}}$, then

$$w_{jk} = \lambda^{jk}$$

$W \in \mathbb{C}^{N \times N}$
Because of the property \(\langle E_n, E_m \rangle = 0 \) we have

\[
W^T W = NI
\]

where \(I \) is the identity matrix in \(\mathbb{C}^{N \times N} \).

Now, let

\[
c = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{bmatrix}, \quad f = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix}
\]

Then the interpolation problem (1), (2) becomes

\[
p(x) = f(x) = \sum_{k=0}^{N-1} c_k E_k(x) = f(x) \quad j = 0, 1, \ldots, N-1
\]

could be written in matrix form

(4) \[
Wc = f
\]

Now multiply (4) by \(W^T \) from left to get

\[
W^T Wc = W^T f \quad \Rightarrow \quad c = \frac{1}{N} W^T f
\]

Thus we get the formula

\[
W^T = \begin{bmatrix} -E_0(x_0) & -E_0(x_1) & \cdots & -E_0(x_{N-1}) \\ -E_1(x_0) & -E_1(x_1) & \cdots & -E_1(x_{N-1}) \\ \vdots & \vdots & \ddots & \vdots \\ -E_{N-1}(x_0) & -E_{N-1}(x_1) & \cdots & -E_{N-1}(x_{N-1}) \end{bmatrix}
\]

\[
c_k = \langle W^T f, E_k \rangle = \frac{1}{N} \sum_{j=0}^{N-1} E_k(x_j) f(x_j)
\]

\[
= \frac{1}{N} \langle f, E_k \rangle
\]

Thus we get the formula

(5) \[
p(x) = \sum_{k=0}^{N-1} c_k E_k(x), \quad c_k = \langle f, E_k \rangle \]
Trigonometric Interpolation (Continue, FFT)

The problem of finding \(p(x) = \sum_{k=0}^{N-1} c_k E_k(x) \), where \(E_k(x) = e^{ixk} \)

s.t. \(p(x_j) = f(x_j) \), \(x_j = \frac{2\pi j}{N}, j = 0, ..., N-1 \)

has a unique solution which is expressed in the following closed form

\[
C = \frac{1}{N} \overline{W}^T f \quad \text{or equivalently} \quad c_k = \frac{1}{N} \sum
\]

or equivalently

\[
c_k = \frac{1}{N} \sum_{j=0}^{N-1} f(x_j) \overline{E}_k(x_j) = \frac{1}{N} \langle f, E_k \rangle
\]

\[
p(x) = \sum_{k=0}^{N-1} c_k E_k(x) - \text{Fornier transform}
\]

Straighforward implementation of these formula will produce the coefficients \(c_k, k=0, ..., N-1 \) for \(N^2 \) long arithmetic operations.
From the formula (5) we see that if we precompute the matrix W we find each coefficient c_k by just N multiplications and N-additions. So for all c_k we need N^2 multiplications.

However there is a clever implementation of this process that needs only $N \log_2 N$ multi/div.

Let us have a comparison:

$$
\begin{align*}
N & \quad N^2 & \quad N \log_2 N \\
1024 & = 2^{10} & \approx 10^6 & \approx 10^4 \\
16384 & = 2^{14} & \approx 2.7 \times 10^8 & \approx 2.8 \times 10^5 \\
\end{align*}
$$

Now this is done? It is done by recursion.

Consider $N = 2n$ (in general, $N = 2^m$).

Theorem: Let $p(x)$ & $q(x)$ be trigonometric polynomials of degree $\leq n-1$ s.t. for $x_j = \frac{2\pi j}{2n}$, $j = 0, 1, \ldots, 2n-1$ interpolate the data $f(x_j)$, $j = 0, 1, \ldots, 2n$ in the following way:

$$
\begin{align*}
p(x_j) &= f(x_j) \\
q(x_j) &= f(x_{j+1}) \\
j = 0, \ldots, n-1
\end{align*}
$$

i.e. $p(x)$ interpolates the data with even index and $q(x)$ interpolates the data with odd index.
\[\text{Ex} \quad \begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & x & x & x & x & x & x & x & x & x \\
\end{array} \]

\[\begin{align*}
0 & - p(x) \\
x & - q(x) \\
\end{align*} \]

Then the polynomial \(P(x) \) of degree \(2n-1 \) that interpolates \(f \) at \(x_0, x_1, \ldots, x_{2n-1} \) is

\[P(x) = \frac{1}{2} \left(1 + e^{i \pi x} \right) p(x) + \frac{1}{2} \left(1 - e^{i \pi x} \right) q(x + \frac{\pi}{n}) \]

We just need to check whether \(p(x_j) = f(x_j) \) for \(j = 0, \ldots, 2n-1 \).

Check First consider even points \(x_j = \frac{2j + 2}{2n} = \frac{2j_n}{n} \)

\[e^{i \pi x_j} = e^{i \frac{2j_n}{n}} = e^{\frac{2j}{n}} = 1 \]

\[P(x_j) = \frac{1}{2} \left(1 + 1 \right) p(x_j) = p(x_j) = f(x_j) \] \(\forall x \)

Next consider odd points \(x_{j+1} = \frac{2j + 2 + \pi}{2n} = \frac{2j + \pi}{n} \)

\[e^{i \pi x_j} = e^{i \left(2j + \pi \right)} = e^{i \pi} = -1 \]

\[P(x_{j+1}) = \frac{1}{2} \left(1 + (-1) \right) q(x_j) = f(x_{j+1}) \] by construction

Thus the polynomial is computed using two polynomials of degree \(n \) times smaller. This gives the general idea for the computations of the interpolation coefficients.
Theorem: Let \(p(x) = \sum_{j=0}^{n-1} \alpha_j E_j(x) \), \(q(x) = \sum_{j=0}^{n-1} \beta_j E_j(x) \)
and \(P(x) = \sum_{j=0}^{2n-1} \gamma_j E_j(x) \). If \(\alpha_j, \beta_j \) are available, then \(\gamma_j \) are computed by

\[
\gamma_j = \frac{1}{2} \alpha_j + \frac{1}{2} e^{i \frac{\pi}{n}} \beta_j \quad j = 0, 1, \ldots, n-1
\]

\[
\gamma_{j+n} = \frac{1}{2} \alpha_j - \frac{1}{2} e^{i \frac{\pi}{n}} \beta_j
\]

Proof: Indeed, \(E_n(x)E_j(x) = E_{nj}(x) \) we have

\[
e^{inx} e^{ijx} = e^{i(nx+j)x}
\]

Rewrite the above formula:

\[
P(x) = \frac{1}{2} \left(1 + E_n(x) \right) \sum_{j=0}^{n-1} \alpha_j E_j(x) + \frac{1}{2} \left(1 - E_n(x) \right) \sum_{j=0}^{n-1} \beta_j E_j(x) e^{i \frac{\pi}{n} j}
\]

\[
P(x) = \frac{1}{2} \sum_{j=0}^{n-1} \left(\alpha_j E_j(x) + \beta_j e^{i \frac{\pi}{n} j} E_j(x) \right)
\]

\[
+ \frac{1}{2} \sum_{j=0}^{n-1} \left(\alpha_j E_{nj}(x) - \beta_j e^{i \frac{\pi}{n} (n+j)} E_{nj}(x) \right) = \sum_{j=0}^{2n-1} \gamma_j E_j(x)
\]

By comparing the coefficients in front of \(E_j(x) \), we get the desired formulas (1).
Now how you work with these and what is the operation count?

First, you precompute the numbers \(\frac{1}{2} e^{-i \frac{2\pi}{n}} = c \).

Then you see that to find the coefficients \(d_j \) you need to:

1. Multiply \(d_j \times \frac{1}{2} \) for \(j = 0, \ldots, n-1 \) \(n \) times.
2. Multiply \(b_j \times c \) for \(j = 0, \ldots, n-1 \) \(n \) times.

Total, \(2n \) long operations.

Let us denote by \(R(2n) \) the cost of computing the coefficients of the polynomial of degree \(2n \). Then obviously the count of long arithmetic operations is

\[
R(2n) = 2R(n) + 2n
\]

the cost of computing two polynomials of degree \(n \).

Now take \(N = 2^m \) \(m = \log_2 N \)

\[
R(2^m) = 2R(2^{m-1}) + 2^m = 2 \left[2R(2^{m-2}) + 2^{m-1} \right] + 2^m = 2^2 R(2^{m-2}) + 2 \cdot 2^m = 2^m R(1) + m \cdot 2^m \approx m 2^m \approx \left\lceil \frac{N \log_2 N}{2} \right\rceil
\]