1. Let \(a = 2655.271 \), \(b = 1836.253 \)
 a) Use the Euclidean Algorithm to compute \(d = \gcd(a, b) \). (3 pt)
 b) Find integers \(x \) and \(y \) such that \(ax + by = d \). (2 pt)
 c) Find all solutions in integers to \(ax + by = d \). (1 pt)

2. Let \(a = 175 \), \(b = 147 \), \(c = 189 \)
 Compute \(d = \gcd(a, b, c) \) then find integers \(x, y, z \) such that \(ax + by + cz = d \). (5 pt)

3. Recall \(\pi(x) \) is the number of primes \(\leq x \).
 a) Use Inclusion-Exclusion to find \(\pi(100) \). (3 pt)
 b) Use the Sieve of Eratosthenes to check your answer. (2 pt)

4. a) Let \(a, b \in \mathbb{P} \). Let \(d = \gcd(a, b) \) and let \(a = da', b = db' \). Show that \((a', b') = 1 \). (3 pt)
 b) Let \(a, b, c \in \mathbb{P} \) show that:
 \[\gcd(ca, cb) = c \gcd(a, b) \] (3 pt)
 c) Let \(a, b \in \mathbb{P} \), show that
 \[\text{lcm}(a, b), \gcd(a, b) = ab \]. (3 pt)