MATH 433 – Quiz 1 (Due Jan 27)

1. a) (3 pts) Prove that if A, B are sets, then
 \[P(A \cap B) = P(A) \cap P(B) \]
 b) (3 pts) Is it always true that \(P(A \cup B) = P(A) \cup P(B) \)?
 Justify your answer.

2. a) (2 pts) Compute \(A \Delta \emptyset, A \Delta \emptyset, A \Delta A, A \Delta A \emptyset \).
 Justify your answers.
 b) (3 pts) On a Venn Diagram shade \((A \Delta B) \Delta C \).
 Is the symmetric difference \(\Delta
 \) associative?
 Justify your answer.
 c) (2 pts) Show that the symmetric difference \(\Delta \)
 satisfies the cancellation law, namely if \(A \Delta B = A \Delta C \) then \(B = C \).

3. (6 pts) Use the Inclusion–Exclusion Principle to compute the number of integers in the interval
 \([1, 10000]\) which are neither divisible by 2 nor by 3 nor by 5.

4. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by:
 \[f(x, y) = (2x - 3y, 3x + 2y) \]
 a) (2 pts) Show that \(f \) is a bijection.
 b) (2 pts) Find a formula for \(f^{-1}(x, y) \).
 c) (2 pts) Let \(f : \mathbb{Z}^2 \to \mathbb{Z}^2 \) be defined by \((x, y)\).
 Is \(f \) an injection? a surjection? Justify your answers.