Skip to content
Texas A&M University
Previous years pictures
(After clicking a link, scoll down)
‣ 2019 camp
‣ 2018 camp
‣ 2017 camp
‣ 2016 camp
‣ 2013 camp
‣ 2012 camp
‣ 2011 camp
‣ 2010 camp
‣ 2009 camp
Sponsored in 2018-2020 by
  • Texas A&M Mathematics
  • Curtis D. Roberts Endowment
  • Texas A&M TLAC Department
Previous sponsors:
  • National Science Foundation
  • American Mathematical Society
  • Mathematical Society of America
  • Texas A&M Inst. Appl. Math. and Comp. SCi.
  • Texas A&M Diversity funds
  • Private contributions

Math reading that you would enjoy

Terrific logic problems books

  1. M. Gardner, Aha! Gotcha, Freeman &Co,1983, ISBN 0-7167-1017-x
  2. M. Gardner, Aha! Insight, Freeman &Co,1983, ISBN 0-7167-1017-x
  3. R. Smullyan, The Lady or the Tiger?, Alfred A. Knopf, NY, 1982 or Dover, 2009
  4. R. Smullyan, Alice in the Puzzle-Land, Penguin Books, 1984
  5. R. Smullyan, The Magic Garden of George B. And Other Logic Puzzles, Polimetrica, 2007
  6. R. Smullyan, King Arthur in Search of His Dog & Other Curious Puzzles, Dover, 2010
In fact, ANY Martin Gardner's and R. Smullyan's books are great.

Puzzles and miscellaneous problems

  1. Brian Bolt, Mathematical Cavalcade, Cambridge Univ. Press
  2. Brian Bolt, A mathematical Pandora's box
  3. Brian Bolt, The amazing mathematical amusement arcade
  4. H.E. Dudeney, Amusements in Mathematics, Dover, 1970, ISBN 0-486-20473-1
  5. H. Dudeney, 536 Puzzles & Curious Problems, Charles Scribner's Sons, NY, 1967, ISBN 0-684-71755-7
  6. M. Gardner, The Unexpected Hanging and Other Mathematical Diversions, Univ. of Chicago Press, 1991, ISBN 0-226-28256-2
  7. M. Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, Univ. of Chicago Press, 1987, ISBN 0-226-28253-8

Exciting books about various areas of math

  1. E. Abbott, Flatland, A Romance of Many Dimensions, Dover, ISBN 0-486-27263-x, 1992. Or Princeton Univ. Press, 1991, ISBN 0-691-02525-8
  2. Colin C. Adams, The Knot Book. An Elementary Introduction to The Mathematical Theory of Knots, W. H. Freeman, 2001.
  3. S. Barr, Experiments in topology, Dover, 1964, ISBN 0-486-25933-1
  4. B. Bold, Famous problems of geometry, Dover, 1982, ISBN 0-486-24297-8
  5. R. Courant and H. Robbins, What is Mathematics?, Oxford Univ. Press, ISBN 0-19-510519-2 A great classics
  6. D. Fuchs and S. Tabachnikov, Mathematical Omnibus. Thirty Lectures on Classic Mathematics, Amer. Math. Soc. 2007
  7. M. Gardner, Mathematics Magic and Mystery, Dover, 1956, ISBN 0-486-20335-2
  8. M. Gardner, Hexaflexagons and Other Mathematical Diversions, Univ. of Chicago Press,1988, ISBN 0-226-28254-6
  9. M. Gardner, The New Ambidextrous Universe, Freeman &Co,1990, ISBN 0-7167-2093-0
  10. M. Gardner, Knotted Doughnuts, Freeman, 1986, ISBN0-7167-1799-9
  11. M. Gardner, Wheels, Life and Other Mathematical Amusements, Freeman &Co,1983, ISBN 0-7167-1589-9
  12. M. Gardner, Penrose Tiles to Trapdoor Ciphers, Freeman &Co,1989, ISBN 0-7167-1987-8
  13. W. Gibson, Knots and How to Tie Them, Wings Books, NY,1989, ISBN 0-517-09369-3
  14. T. Gowers, Mathematics. A Very Short Introduction, Oxford Univ. Press, 2002
  15. I. Hargittai and M. Hargittai, Symmetry. A Unifying Concept, Shelters Publ., Inc., Bolinas, CA 1994,
  16. P. Hilton, D. Hilton, and J. Pedersen, Mathematical Reflections. In a Room With Many Mirrors, Springer Verlag, 1997
  17. P. Hilton, D. Hilton, and J. Pedersen, Mathematical Vistas. From a Room With Many Windows, Springer Verlag, 2002
  18. H.Rademacher and O.Toeplitz, The Enjoyment of Mathematics, Dover, 1990, ISBN 0-486-26242-1 A great classics
  19. J. D. Sally and P. J. Sally, Jr., Roots to Research, Amer. Math. Soc. 2007
  20. R. Smullyan, Satan, Cantor, and Infinity, A. Knopf, NY, 1992, ISBN 0-679-40688-3
  21. A. Sossinsky, Knots. Mathematics With a Twist, Harvard Univ. Press, 2002.
  22. H. Steinhaus, Mathematical Snapshots, Oxford Univ. Press, 1983, ISBN 0-19-503267-5
  23. I. Stewart and M. Golubitsky, Fearful Symmetry. Is God a Geometer?, Penguin, 1993, ISBN 0-14-013047-0
  24. N. Vilenkin, In Search of Infinity, Birkhauser, Boston, 1995, ISBN 0-8176-3819-9

Challenging math problems (for advanced high school students)

  1. D.Shklarsky at al., The USSR Olympiad Problem Book, Dover, 1993, ISBN 0-486-27709-7
  2. C. Trigg, Mathematical Quickies, Dover, 1985, ISBN 0-486-24949-2
  3. H. Steinhaus, One Hundred Problems in Elementary Mathematics, Dover, 1964, ISBN 0-486-23875-x
  4. A.Yaglom and I.Yaglom, Challenging Mathematical Problems, vol.1, Dover, 1987, ISBN 0-486-65536-9
  5. A.Yaglom and I.Yaglom, Challenging Mathematical Problems, vol.2, Dover, 1987, ISBN 0-486-65537-7


  1. F. Mosteller, Fifty Challenging Problems, Dover, ISBN 0-486-65355-2, 1965
  2. F. Mosteller, R. Rourke, and G. Thomas, Probability and Statistics, Addison-Wesley, 1971 (this book has a nice chapter on combinatorics)


  1. R. Feynman, Surely You Are Joking, Mr. Feynman, Bantam Books, 1989, ISBN 0-533-34668-7 (A funny and exciting story about the life of Nobel Prize winner R. Feynman)
  2. George Polya, How to Solve It. Several editions are available, e.g. Princeton Univ. Press 1982. The book by a famous mathematician discusses strategies of problem solving.
  3. S. Nasar, A beautiful mind. A fascinating and well written biography of the Nobel prize winner J. Nash. A major movie is based on this book.
  4. Paul Hoffman, The man who loved only numbers. A marvelous biography of one of the most unusual mathematicians of 20th century Paul Erdös.
  5. The wonderful Mathematical World series of inexpensive exciting books by the American Math Society can be found at AMS E-Math. Among the available volumes: Fixed points, Stories about maxima and minima, Knots and Surfaces, Groups and symmetry, Mathematical circles, Portraits of the Earth: A Mathematician Looks at Maps, and many others.

Some good math textbooks for K-12

  1. Singapore series of Math and Science textbooks for K-12 available at SingaporeMath
  2. A. P. Kiselev, Kiselev's Geometry. Book I. Planimetry, Sumizdat 2006. A great classics
  3. A. P. Kiselev, Kiselev's Geometry. Book II. Stereometry, Sumizdat 2008. A great classics
  4. Small and inexpensive very good books for high school students by I. M. Gelfand, one of the greatest mathematicians of 20th century: Algebra; Trigonometry; Functions and Graphs; The Method of Coordinates. All published by Springer Verlag, except the last one by Dover.
  5. Japanese Math books for grades 10 - 12. Volumes 8 - 11 in the Mathematical World series by the American Math Society found at AMS E-Math