1. Let \(D \) denote the *square metric* on the Cartesian plane \(\mathbb{R}^2 \), that is,
\[
D((x_1, y_1), (x_2, y_2)) = \max\{|x_2 - x_1|, |y_2 - y_1|\}
\]
for all real numbers \(x_1, x_2, y_1, y_2 \). Consider the model in which points, lines, half-planes, and angle measure are as usual for the Cartesian plane, but distance is given by the square metric. Let \(A = (0, 0), B = (2, 0), \) and \(C = (2, 2) \). Let \(A' = (-4, 2), B' = (-2, 0), \) and \(C' = (0, 2) \).

(a) Sketch the two triangles \(\triangle ABC \) and \(\triangle A'B'C' \).

(b) Find all angle measures in each triangle, and record them.
\[
\begin{align*}
\angle ABC &= 90^\circ & \angle BCA &= 45^\circ & \angle CAB &= 45^\circ \\
\angle A'B'C' &= 90^\circ & \angle B'C'A' &= 45^\circ & \angle C'A'B' &= 45^\circ
\end{align*}
\]

(c) Find all side lengths for each triangle, and record them. (Remember to use the square metric!)
\[
AB = 2 & \quad BC = 2 & \quad AC = 2 \\
A'B' = 2 & \quad B'C' = 2 & \quad A'C' = 4
\]

(d) Does the Side-Angle-Side Postulate hold for this model? Explain.

No: \(\overline{AB} \neq \overline{A'B'}, \overline{BC} \neq \overline{B'C'}, \) and \(\angle ABC \neq \angle A'B'C' \), however, if the SAS Postulate holds, then \(\triangle ABC \cong \triangle A'B'C' \), however these two triangles are not congruent since \(\overline{AC} \neq \overline{A'C'} \). Therefore the SAS Postulate does not hold.
2. Prove Theorem 3.5.9: If \(\ell \) is a line and \(P \) is a point on \(\ell \), then there exists exactly one line \(m \) such that \(P \) lies on \(m \) and \(m \perp \ell \). (Hint: Use the Angle Construction Postulate.)

Let \(H \) be one of the half-planes bounded by \(\ell \).
Let \(E \) be a point on \(\ell \), and let \(P \) be a point in the half-plane \(H \).
By the Angle Construction Postulate, there is a unique ray \(\overrightarrow{PE} \) such that \(E \in m \) and \(m \perp \ell \).

3. Prove the Vertical Angles Theorem (Theorem 3.5.13): If angles \(\angle BAC \) and \(\angle DAE \) form a vertical pair, then \(\angle BAC \cong \angle DAE \). (Hint: Use the Linear Pair Theorem.)

By the definition of vertical pair, \(\angle BAC \) and \(\angle EAC \) form a linear pair, and \(\angle EAC \) and \(\angle DAE \) form a linear pair.

By the Linear Pair Theorem,

\[
\angle BAC + \angle EAC = 180^\circ \quad \text{and} \quad \angle EAC + \angle DAE = 180^\circ.
\]

So, \(\angle BAC = 180^\circ - \angle EAC \)
\[
= 180^\circ - \left(180^\circ - \angle DAE \right)
\]
\[
= \angle DAE.
\]

So, \(\angle BAC \cong \angle DAE \).