MATH 367 HOMEWORK ASSIGNMENT 7 SOLUTIONS

1. \(\angle 5 \equiv \angle 2 \) (Corresponding angles)
 \(\angle 4 \equiv \angle 1 \) (Vertical angles)
 \[x + y + z = 180 \]
 \[y + 2y + 72 = 180 \]
 \[3y = 90 \]
 \[y = 30 \text{ and } x = 60 \]

2. Consider the exterior angle \(\angle BCD \). Since \(\angle BCD \) and \(\angle ACB \) form a linear pair, \(m(\angle BCD) + m(\angle ACB) = 180 \).
 Also the sum of the interior angles of the triangle is:
 \[m(\angle ABE) + m(\angle BCB) + m(\angle CEB) = 180 \]
 Solving for \(m(\angle ABE) \) in the first equation, we have \(m(\angle ABE) = 180 - m(\angle BCD) \).
 Substituting into the second equation, we have:
 \[m(\angle ABE) + m(\angle BCD) + m(\angle CEB) = 180 \]
 Solving for \(m(\angle BCD) \), we have \(m(\angle BCD) = m(\angle ABE) - m(\angle CEB) \).

3. By Thm 5.1.1, alternate interior angles are congruent,
 \(\theta \parallel \theta' \)

4. Let \(\square ABCD \) be a parallelogram and consider the diagonal \(\overline{AC} \).
 Then \(\angle ACD \) and \(\angle BAC \) are alternate interior angles with respect to parallel lines \(\overline{AB} \) and \(\overline{CD} \), so they are congruent.
 Also \(\angle DAC \) and \(\angle CBA \) are congruent, by similar reasoning. Since \(\overline{AC} \parallel \overline{CD} \), by the ASA Theorem, \(\triangle ABC \cong \triangle CDA \).
 A similar argument shows that \(\overline{BB} \) divides the parallelogram into two congruent triangles.

5. By #4, \(\overline{AB} \equiv \overline{CD} \) and \(\overline{BC} \equiv \overline{DA} \).

6. By #4, \(\angle ABC \equiv \angle CDA \) and \(\angle BAD \equiv \angle CDB \).

7. Note that \(\overline{AB} \) is a transversal for \(\overline{BC} \) and \(\overline{AB} \), and all interior angles are right angles. By the Alternate Interior Angles Theorem, \(\overline{BC} \parallel \overline{AB} \). Similarly, \(\overline{AB} \parallel \overline{CD} \).
 So \(\square ABCD \) is a parallelogram.