WHITE EXAM

1. (a) She is not hungry.
 (b) She does not eat.
 (c) If she does not eat,
 then she is not hungry.
 (d) If she eats,
 then she is hungry.

2. If P and Q are antipodal points, then there are
 infinitely many great circles on which both lie.

3. (a) no, yes, yes
 (b) \(\{a, b, c, f, p\} \)
 \(\{a, b, c, f, p\} \)
 \(\{a, b, c, f, p\} \)

4. Let A and B be two points for which
 there are distinct lines l and m such
 that A and B both lie on l and m.
 Suppose A \(\not= \) B. By (I1), there is a unique
 line on which both A and B lie, which
 contradicts the hypothesis that there are
 distinct lines l and m on which both,
 A and B lie. Therefore A = B.

5. (a) \(\rho((1,1), (-1,1)) = 2 + 0 = 2 \)
 \(\rho((-1,1), (1,1)) = 2 + 0 = 2 \)
 \(\rho((-1,1), (-1,-1)) = 2 + 3 = 5 \)

YELLlow EXAM

1. (a) He is very sick.
 (b) He does not go to school.
 (c) If he does not go to school,
 then he is very sick.
 (d) If he goes to school,
 then he is not very sick.

3. (a) no, yes, yes
 (b) \(\{a, b, c, f, d\} \)
 \(\{a, c, f, d\} \)
 \(\{a, c, f, d\} \)

4. Let P and Q be two points for which
 there are distinct lines l and m such
 that P and Q both lie on l and m.
 Suppose P \(\not= \) Q. By (I1), there is a unique
 line on which both P and Q lie, which
 contradicts the hypothesis that there are
 distinct lines l and m on which both
 P and Q lie. Therefore P = Q.

5. (a) \(\rho((1,-1), (0,1)) = 2 + 2 = 4 \)
 \(\rho((-1,0), (1,1)) = 1 + 1 = 2 \)
6. Let P, Q, R, and S be four distinct points for which \(P \neq Q \neq R \) and \(Q \neq R \neq S \). By definition of betweenness,
\[
PQ + QR = PR \quad \text{and} \quad QR + RS = QS.
\]
So, substituting, we find
\[
PQ + QS = (PR - QR) + (QR + RS) = PR + RS.
\]

7. (a) F
(b) F
(c) T
(d) F
(e) T
(f) F

7. (a) T
(b) F
(c) T
(d) F
(e) T
(f) T