1. Find the following limits.

(a) \(\lim_{x \to 0} \frac{\ln(1-x)}{x^2} \)

(b) \(\lim_{x \to \pi/2} (2x - \pi) \tan^{-1} x \)
2. Let $f(x) = \frac{\ln x}{x}$, $x > 0$.

 (a) Find $f'(x)$.

 (b) Find the interval(s) on which f is increasing, and the interval(s) on which f is decreasing.
3. Let \(f(x) = xe^{-2x} \).
(a) Find \(f'(x) \).

(b) Find all local maximum and minimum values of \(f \).

(c) Find the interval(s) on which \(f \) is concave up, the interval(s) on which \(f \) is concave down, and any inflection points.
4. Find the absolute maximum and absolute minimum values of \(f(x) = \sin(x) + \frac{1}{2} \sin(2x) \) on the interval \([0, 2\pi]\).
5. A cylindrical can without a top is made to contain a volume of 100 cm3. Find the radius and height of such a can with minimal surface area.