§ 10.2. Green's Theorem

Let D be a closed, bounded region in \mathbb{R}^2, whose boundary $C = \partial D$ consists of finitely many simple closed curves that orient the curve C s.t. D is on the left. Let $F(x, y) = M(x, y) \hat{i} + N(x, y) \hat{j}$ be a C' vector field. Then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy.$$

Ex. Let $F = x^2 \hat{i} + y^2 \hat{j}$, D bounded by $y = x^2$.

LHS = $\int_0^\infty (x^2 + x^2 e^{2t}) \, dt + \int_0^1 (x^2 + x^2) \, dt$

$= \frac{1}{4} + 2 \frac{1}{6} - \frac{2}{3} = -\frac{1}{12}$

RHS = $\iint_D (1 - x) \, dx \, dy = \int_0^1 \left(\int_y^{\sqrt{y}} x^2 \, dx \right) \, dy = \int_0^1 \frac{x^3}{2} \bigg|_y^{\sqrt{y}} \, dy$

$= \int_0^1 \left(\frac{y}{2} + \frac{y^3}{2} \right) \, dy = -\frac{1}{4} + \frac{1}{6} = -\frac{1}{12}$.

For $F = -y \hat{i} + x \hat{j}$, $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 1 + 1 = 2$. Then

$$\oint_C M \, dx + N \, dy = \iint_D \frac{2}{x} \, dx \, dy = 2 \iint_D \, dx \, dy = 2 \text{ area of } D.$$
Ex: Find the area of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \).

\[x = a \cos t, \quad y = b \sin t, \quad 0 \leq t \leq 2\pi \]

Area: \(\frac{1}{2} \int_C (\mathbf{F} \cdot d \mathbf{r}) \) where \(\mathbf{F} = (x, y) \)

\[= \frac{1}{2} \int_0^{2\pi} (\mathbf{F} \cdot d \mathbf{r}) = \frac{1}{2} \int_0^{2\pi} ab \, dt = ab \pi. \]

Outer boundary counterclockwise

Inner boundary clockwise

\(n \) = the outward unit normal vector.

Let \(D \) be a region bounded by \(C = \partial D \) s.t. Green's theorem applies. Let \(n \) be the outward unit normal vector at \(C = \partial D \), and \(\mathbf{F}(x, y) = M(x, y)i + N(x, y)j \) be \(C \) vector field on \(D \). Then

\[\mathbf{F} \cdot n = \text{particles crossing} \quad \text{C out} = \text{Flux} \]

\(\mathbf{F} \cdot n = \text{rate of particles leaving a point} \)

\[\oint_C (F \cdot n) \, ds = \iint_D \nabla \cdot F \, dA \quad (\text{divergence theorem}) \]

Total particles crossing \(C \) out = total particles left \(\partial D \).
when $C : x(t) = (x(t), y(t))$.

$T(t) = (x'(t), y'(t)) \perp \mathbf{N}(t) = (-y'(t), x'(t))$, $\mathbf{n}(t) = \frac{\mathbf{N}(t)}{||\mathbf{N}(t)||}$.

Path Independence.

A vector field \mathbf{F} is said to have a path-independence line integral if

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$$

for any simple, piecewise C^1 curves with the same initial and terminal points.

Theorem. A vector field \mathbf{F} has a path-independent line integral if and only if

$$\oint_C \mathbf{F} \cdot d\mathbf{s} = 0$$

for any piecewise C^1 simple, closed curve.

Proof.

$$\oint_C \mathbf{F} \cdot d\mathbf{s} = \int_{C_1} \mathbf{F} \cdot d\mathbf{s} - \int_{C_2} \mathbf{F} \cdot d\mathbf{s} = 0.$$
THEM. Let \(F \) be a continuous vector field on a connected open region \(D \) of \(\mathbb{R}^n \). Then \(F = \nabla f \) if and only if \(F \) has a path-independent line integral over curves in \(D \). Moreover, if \(C \) is any piecewise \(C^1 \)-oriented curve in \(D \) with initial point \(A \) and terminal point \(B \), then
\[
\int_C F \cdot dS = f(B) - f(A), \quad (F = \nabla f).
\]

Proof: \(C: x(t), \ A = x(a), \ B = x(b) \)
\[
\int_C F \cdot dS = \int_a^b F(x(t)) \cdot x'(t) dt = \int_a^b \frac{d}{dt} f(x(t)) dt
\]
\[
= f(x(b)) - f(x(a)) = f(B) - f(A).
\]

Ex. \(F = M \hat{i} + N \hat{j} = x \hat{i} + y \hat{j} \). Note \(\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y} \).
\[
\int_C F \cdot dS = \int_0^1 M dx + N dy = \int_0^1 (M x'(t) + N y'(t)) dt
\]

1) \(x = t, \ y = t, \ 0 \leq t \leq 1, \int_C F \cdot dS = \int_0^1 (x + x) dt = 1; \)
2) \(x = t, \ y = t^2, \ 0 \leq t \leq 1, \int_C F \cdot dS = \int_0^1 (t + t^2) dt = \frac{1}{2} +
frac{2}{4} = 1; \)
3) \(x = 0, \ y = t, \ 0 \leq t \leq 1, \int_C F \cdot dS = \int_0^1 (0 + 0) dt + \int_0^1 (t dt + 0) dt = 1; \)
4) \(F = \frac{1}{2} (x^2 + y^2), \ F = \nabla f = (F_x, F_y) = (x, y), \)
\[
\int_C F \cdot dS = f(1, 1) - f(0, 0) = \frac{1}{2}(1 + 1) + 0 = 1.
\]
When $F = \nabla f$, f is called a conservative vector field, scalar potential.

For given F,
1) How to know if F is conservative?
2) Assume F is conservative, how to find f s.t. $F = \nabla f$?

Def. A region D in \mathbb{R}^2 is simply connected if any simple closed curve in D can be shrunk to a point.

Yes: \bigcirc no: \bigcirc

Thm: Let $F = M \hat{i} + N \hat{j}$ be a C^1 vector field in a simply connected region D in \mathbb{R}^2 or \mathbb{R}^3. Then $F = \nabla f$ for some f if and only if $\nabla \times F = 0$ in D.

Remark: $\nabla \times F = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & N \\ D & D & D \end{vmatrix} = \frac{\partial N}{\partial z} i - \frac{\partial M}{\partial z} j + (\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}) k = 0$

$\Rightarrow N = N(x, y), M = M(x, y)$ and $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$.

Ex: Let $F = x^2 y \hat{i} - 2xy \hat{j}$
then $\frac{\partial N}{\partial x} = -2y + \frac{\partial M}{\partial y} = x^2 \Rightarrow$ not conservative.
Ex. \(F = (2x + z + 2y) \hat{i} + (x^2 - 2x \sin 2y) \hat{j} \). Check. \(\frac{\partial M}{\partial y} = 2x - 25 \sin 2y = \frac{\partial N}{\partial x} = 2x - 25 \sin 2y \)

\[\Rightarrow F \text{ is conservative. How to find } f \text{ s.t. } F = \nabla f ? \]

\[F = M \hat{i} + N \hat{j} = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right). \]

\[M = \frac{\partial f}{\partial x} \Rightarrow f = \int M \, dx + \alpha(y) = x^2y + x \cos 2y + \alpha(y) \]

\[N = \frac{\partial f}{\partial y} \Rightarrow f = \int N \, dy + \beta(x) = x^2y + x \cos 2y + \beta(x) \]

\[f = f \Rightarrow \alpha(y) = \beta(x) = 0 \Rightarrow f = x^2y + x \cos 2y. \]

THM. If \(D \) is simply connected domain, then \(F = \nabla f \) in \(D \) if and only if \(\nabla \times F = 0 \)

Ex. \(F = (e^x \sin y - y^2) \hat{i} + (e^x \cos y - x^2) \hat{j} + (z - xy) \hat{k} \)

Check \(\nabla \times F = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial x} \end{vmatrix} = 0. \)

\[\Rightarrow F = M \hat{i} + N \hat{j} + PK = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right). \text{ To find } f. \]

\[f = \int M \, dx + \alpha(y, z) = \int (e^x \sin y - y^2) \, dx + \alpha(y, z) = e^x \sin y - xy^2 + \alpha(y, z) \]

\[f = \int N \, dy + \beta(x, z) = \int (e^x \cos y - x^2) \, dy + \beta(x, z) = e^x \cos y - x^2y + \beta(x, z) \]

\[f = \int P \, dz + \gamma(x, y) = \int (z - xy) \, dz + \gamma(x, y) = z^2 - xyz + \gamma(x, y) \]

\[f = f = f \Rightarrow \alpha(y, z) = \beta(x, z) = 0, \gamma(x, y) = e^x \sin y \]

\[\Rightarrow f = e^x \sin y - xy^2 + z^2 \, (c) \]
Next to compute $\int \mathbf{F} \cdot d\mathbf{S}$ along a curve from $(0, 0, 0)$ to $(1, \frac{\pi}{2}, 2)$, we have

$$\int \mathbf{F} \cdot d\mathbf{S} = f(1, \frac{\pi}{2}, 2) - f(0, 0, 0) = e^{-1} - 1 \cdot \frac{\pi}{2} \cdot 2 + \frac{4}{2} = e^{-1} + 2.$$