MA 304 EXAM 2 —— Fall 2013

REMARKS There are 8 problems. Problems 1-4 are each worth 13 points while problems 5-8 are each worth 12 points. Show all relevant work. NO CALCULATORS.

1.

a. Find a basis for the subspace S of R^4 consisting of all vectors of the form

$$\begin{pmatrix} a+b, a-b+2c, b, c \end{pmatrix} = a \begin{pmatrix} 1, 1, 0, 0 \end{pmatrix} + b \begin{pmatrix} 1, -1, 1, 0 \end{pmatrix} + c \begin{pmatrix} 0, 2, 0, 1 \end{pmatrix}$$

where a, b, c are all real numbers. What is the dimension of S?

b. Is it possible to find a pair of two-dimensional subspaces U and V of R^3 such that $U \cap V = \{0\}$? Prove your answer.

2.

a. Given

$$v_1 = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 4 \\ 1 & 2 \end{pmatrix}$$

Find vectors u_1 and u_2 so that S will be the transition matrix from $\{v_1, v_2\}$ to $\{u_1, u_2\}$.

b. Find the transition matrix representing the change of coordinates on P_3 from the ordered basis $[1, x, x^2]$ to the ordered basis $[1, 1 + x, 1 + x + x^2]$.

$$S = \begin{pmatrix} 6 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

S^{-1} is the answer.
3. Let \(x \) and \(y \) be nonzero vectors in \(R^m \) and \(R^n \), respectively, and let \(A = xy^T \) be an \(m \times n \) matrix.

 a. Show that \(\{x\} \) is a basis for the column space of \(A \) and that \(\{y^T\} \) is a basis for the row space of \(A \).

 \[
 A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} (y_1, \ldots, y_n)_{x \times n}
 \]
 \[
 A_{jk} = x_j y_k \quad \text{and} \quad \text{row vector is } x_j (y_1, \ldots, y_n)
 \]

 b. What is the dimension of the null space of \(A \)?

 \[
 \text{nullity rank theorem:} \quad \text{nullity } + \text{rank } = \text{dim } R^n
 \]
 \[
 A: R^n \rightarrow R^m \quad \Rightarrow \quad \text{nullity } + \text{rank } = \text{dim } R^n
 \]
 \[
 \text{rank } = 1 \quad \Rightarrow \quad \text{dim nullspace is } \boxed{n - 1}
 \]

4. Let \(A \) be an \(6 \times n \) matrix of rank \(r \) and let \(b \) be a vector in \(R^6 \). For each pair of values of \(r \) and \(n \) that follow, indicate the possibilities as to the number of solutions one could have for the linear system \(Ax = b \). Explain your answers.

 a. \(n = 7, r = 5 \)
 \[
 \begin{align*}
 &\text{either } 1) \text{ no solution since } r < 6 \\
 &\quad 2) \text{ or } \infty \text{ many solutions since } \text{rank } = 5 \\
 &\text{null } = 7
 \end{align*}
 \]

 b. \(n = 7, r = 6 \)
 \[
 \infty \text{ many solutions } \begin{align*}
 &\text{since } r = 6 \text{ and } \text{null } = 1 \\
 \end{align*}
 \]

 c. \(n = 5, r = 5 \)
 \[
 \begin{align*}
 &\text{either } 1) \text{ no solution since } r < 5 \\
 &\quad \text{or } 2) \text{ unique solution since } \text{null } = 0 \\
 &\text{5 equations}
 \end{align*}
 \]

 d. \(n = 5, r = 4 \)
 \[
 \begin{align*}
 &\text{either } 1) \text{ no solution } r = 4 < 6 \\
 &\quad 2) \text{ or } \infty \text{ many solutions } \text{null } = 1 - 4
 \end{align*}
 \]

2
5. Find the kernel and range of each of the following linear operators on P_3:

a. $L(p(x)) = xp'(x)$.

$$L(a+bx+cx^2) = x(a+bx+cx^2)$$

Kernel $L = \{ \alpha \neq 0 \}$

Range $L = \mathbb{R}^2$

b. $L(p(x)) = p(x) - p'(x)$

$$L(a+bx+cx^2) = -cx^2+bx+a-b$$

Kernel $L = \{ \alpha \neq 0 \}$, Range $L = \mathbb{R}^3$

c. $L(p(x)) = p(0)x + p(1)$.

$$L(a+bx+cx^2) = ax + (a+bx+c)$$

Kernel $L = \{ 3x-x^2 \}$

Range $L = \mathbb{R}$

6. Let S be the subspace of $C[a, b]$ spanned by e^x, xe^x, and x^2e^x. Let D be the differentiation operator of S. Find the matrix representing D with respect to $[e^x, xe^x, x^2e^x]$.

$$D e^x = e^x$$

$$D xe^x = e^x + xe^x$$

$$D x^2e^x = 2xe^x + x^2e^x$$

$$e^x \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrix of D with respect to the given basis
7. Let L be the linear operator mapping \mathbb{R}^3 into \mathbb{R}^3 defined by $L(x) = Ax$, where

$$A = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{pmatrix}$$

and let

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$

Find the transition matrix V corresponding to a change of basis from $\{v_1, v_2, v_3\}$ to $\{e_1, e_2, e_3\}$ and use it to determine the matrix B representing L with respect to the basis $\{v_1, v_2, v_3\}$.

$$V = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \quad V^{-1} A V = B$$

8.

a. Find the point on the line $y = 2x + 1$ that is closest to the point $(5, 2)$.

$$\mathbf{v} = (5-x, 1-2x) \quad (1, 2) = 0$$

$$5 - x + 2 - 4x = 7 - 5x = 0$$

$$x = \frac{7}{5}$$

$$y = 2x + 1 = \frac{19}{5}$$

b. Find the distance from the point $(1, 1, 1)$ to the plane $2x + 2y + z = 0$.

$$d = \left| \frac{(1, 1, 1) \cdot (2, 2, 1)}{3} \right| = \frac{5}{3}$$