4.3 #3 Let $a, b \in G$, then $(ab)^2 = e$

so $abab = e$

Multiplying by a on the left and b on the right we get:

$aaabbb = aee$

$a^2 (ba) b^2 = agb$

$c (ba) e = ab$

$a ba = ab$ so G is abelian

4.3 #4: closure holds since $a \ast b = ac^{-1}b \in G$

Associativity $(x \ast y) \ast z = (xc^{-1}y) \ast z = xc^{-1}y z$

$x \ast (y \ast z) = x c^{-1}(y \ast z) = x c^{-1}(yc^{-1}z) = (x \ast y) \ast z$

Identity $x \ast c = xc^{-1}c = x$ for all $x \in G$ so c is the identity (Also $c \ast x = c c^{-1} x = ee = c$)

Inverse Given $x \in G$ take $z = cx^{-1}c$

Then $x \ast z = x c^{-1} c x^{-1} c = xx^{-1}c = ec = c$

and $z \ast x = cx^{-1} c^{-1} x = c x^{-1} ex = c x^{-1} x = ce = c$.

So $c x^{-1} c$ is the inverse of x.

So G is a group under \ast.

4.3 #5 Let $J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then $G = \{aJ\}$ and $J = 3J$.

Let $X = xJ$ then $AX = aXJ = 3axJ = xJ$

$3a = 1$ so $a = \frac{1}{3}$

We then get also $XA = x, \frac{1}{3}J = x, \frac{1}{3}J = xJ = X$.

So $A = \frac{1}{3} J$

G satisfies closure and associativity since $aJ, bJ = abJ^2 = 3abJ \in G$ and matrix multiplication is associative, $A = \frac{1}{3} J$ is the identity and the inverse of xJ is $\frac{1}{x}J$ since $xJ, \frac{1}{x}J = \frac{1}{x}J^2$

$= \frac{1}{3} J = \text{identity}$.
7. \(D(4) = \{ e, s, s^2, s^3, R, sR, s^2R, s^3R \mid R^2 = s^4 = e, R_s = s^3R \} \)

Multiplication Table for \(D(4) \)

<table>
<thead>
<tr>
<th></th>
<th>(e)</th>
<th>(s)</th>
<th>(s^2)</th>
<th>(s^3)</th>
<th>(R)</th>
<th>(sR)</th>
<th>(s^2R)</th>
<th>(s^3R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>(e)</td>
<td>(s)</td>
<td>(s^2)</td>
<td>(s^3)</td>
<td>(R)</td>
<td>(sR)</td>
<td>(s^2R)</td>
<td>(s^3R)</td>
</tr>
<tr>
<td>(s)</td>
<td>(s)</td>
<td>(s^2)</td>
<td>(s^3)</td>
<td>(e)</td>
<td>(sR)</td>
<td>(s^2R)</td>
<td>(s^3R)</td>
<td>(R)</td>
</tr>
<tr>
<td>(s^2)</td>
<td>(s^2)</td>
<td>(s^3)</td>
<td>(s)</td>
<td>(R)</td>
<td>(sR)</td>
<td>(s^2R)</td>
<td>(s^3R)</td>
<td>(e)</td>
</tr>
<tr>
<td>(s^3)</td>
<td>(s^3)</td>
<td>(e)</td>
<td>(s^2)</td>
<td>(s^3R)</td>
<td>(sR)</td>
<td>(s^2R)</td>
<td>(e)</td>
<td>(R)</td>
</tr>
<tr>
<td>(R)</td>
</tr>
<tr>
<td>(sR)</td>
</tr>
<tr>
<td>(s^2R)</td>
</tr>
<tr>
<td>(s^3R)</td>
</tr>
</tbody>
</table>
4.4 #12 First notice that if \((r, s) \sim (t, u)\) then \(ru = ts\) and since \(s, u \neq 0\) \(r = 0 \iff t = 0\).

\(\sim\) is reflexive since \(rs = rs\) so \((r, s) \sim (r, s)\)

\(\sim\) is symmetric since \((r, s) \sim (t, u) \iff ru = st \iff ts = ur \iff (t, u) \sim (r, s)\)

\(\sim\) is transitive: Suppose \((r, s) \sim (t, u)\) and \((t, w) \sim (v, w)\).

By the remark at the beginning we know that \(r = 0 \iff t = 0 \iff v = 0\).

Case 1: \(r = 0\) then \(t = 0\), \(v = 0\) so \(rw = sv = 0\) and \((r, s) \sim (v, w)\).

Case 2: \(r \neq 0\) then \(t \neq 0\) and \(v \neq 0\). We also have \(s \neq 0\), \(u \neq 0\).

Since \((r, s) \sim (t, u)\) we get \(ru = st\)

Since \((t, u) \sim (v, w)\) we get \(tw = uv\)

So \(ru + tw = st + uv\)

By the axioms of arithmetic \((rw - sv) = 0\) and since we are in an integral domain there are no zero divisors and since \(u \neq 0\), \(t \neq 0\)

\(rw - sv = 0 \Rightarrow rw = sv \Rightarrow (r, s) \sim (v, w)\).

Since the relation \(\sim\) is reflexive, symmetric and transitive it is an equivalence relation.

Addition of equivalence classes is well defined

We need to show \((r, s) \sim (r', s')\) and \((t, u) \sim (t', u')\)

\((r, s) + (t, u) \sim (r', s') + (t', u')\)

1. \((ru + st, su) \sim (ru' + st', s'u')\)
2. \((ru + st) s'u' = su\ (ru' + st')\)
3. \(rus'u' + st s'u' = su(r'u' + s't')\)

We know \(rs' = r's\) and \(tu' = ut'\)

So \(rus'u' + st s'u' = (rs')uu' + (tu')ss' = r's uu' + ut'ss' = su r'u' + su s't'\)
Multiplication of equivalence classes is well defined

We need to show \((r, s) \sim (r', s')\) and \((t, u) \sim (t', u')\) \(\Rightarrow\)

\((r, s)(t, u) = (r', s')(t', u')\) or

\((rt, sw) = (r't', s'u')\) \(\Rightarrow \) \(rt's'u' = su'r'\)

But we know \(rs' = rs\) and \(tu' = ut'\) so

\(rt's'u' = (rs')(tu') = (rs)(ut') = su'r'\)

Addition is associative

\([\{(r, s) + (t, u)\} + (v, w)] = (ru + st, su) + (v, w) =\]

\((ru + st, su + vs)\) \(\Rightarrow \)

\((r, s) + \{(t, u) + (v, w)\} = (r, s) + \{(tu + uv, uw)\} =\]

\((ru + st, su + uv, suw) = [(ru + st, sw) + vs + uv, suw]\)

Addition is commutative

\((r, s) + (t, u) = (ru + st, su) = (ts + ur, us) = (tu) + (rs)\)

\((0, 1)\) is an identity for addition

\((r, s) + (0, 1) = (r + 1 + s, 0, s, 1) = (r, s)\)

\((-r, s)\) is the additive inverse for \((r, s)\)

\((r, s) + (-r, s) = (rs - sr, s^2) = (0, s^3) = (0, 1)\) since \(0 = 0\).

Multiplication is associative

\[\{(r, s)(t, u)\} \{(v, w)\} = (rt, su) \{(v, w)\} = (rtv, suw)\]

\[\{(t, u) \{(v, w)\}\} = (r, s) \{(tv, uw)\} = (rtv, suw)\]

Multiplication is commutative

\((r, s)(t, u) = (rt, su) = (tr, us) = (t, u)(r, s)\)

Multiplication is distributive with respect to addition

(Since multiplication is commutative we need to check only one distributive law.)
\[(r, s)(t, w + (r, s)w) = (r, s)(tw + uv, sw) = r(tw + uv), sww) = (rtw + ruv, sww)\]

\[(r, s)(t, w) + (r, s)(r, s)w = (rt, sw) + (rv, sw) = \]
\[\begin{align*}
 (rtsw + surv, s^2uw) &\sim (rtw + ruv, sww) \sim uv \\
 (rtsw + surv) sww &\sim s^2uw (rtw + ruv) \\
 rts^2uw^2 + s^2utvw + rvw &\sim s^2rtuw^2 + ru^2s^2vw
\end{align*}\]

\((1, 1)\) is a multiplicative identity

\((r, s)(1, 1) = (r, 1, s, 1) = (r, s)\)

So \(Q\) is a commutative ring with identity under

\[\text{the operation}\]

\[\text{Inverse: Let } (r, s) \neq (0, 1), r \neq 0 \]

\[\text{then } (r, s)(s^{-1}) = (rs, sr) \sim (1, 1)\]

So every non-zero element of \(Q\) has an inverse.

\(Q\) is a field.

\[\text{Note that if } R = \mathbb{Z} \text{ we get the set of all fractions } \frac{r}{s} \text{ where } s \neq 0 \text{ with } \sim \text{ meaning that the fractions are equivalent and } + \text{ and multiplication in } Q \text{ are ordinary addition and multiplication of fractions.}\]

If \(R = \mathbb{Z}[x]\) the set of polynomials with integer coefficients then \(Q\) is the field of rational fractions \(\frac{p(x)}{q(x)}\).