3.5 Properties of Continuous Functions

Intermediate Value Theorem
Suppose \(f \) is continuous on the closed interval \([a, b]\) and let \(N \) be any number strictly between \(f(a) \) and \(f(b) \). Then there exists a number \(c \) in \((a, b)\) such that \(f(c) = N \).

Example: Use the Intermediate Value Theorem to show there is a root of the given equation in the given interval.

a) \(x^3 - 2x^2 - x - 3 = 0 \), \((2, 3)\)
\[f(x) = x^3 - 2x^2 - x - 3 \] is a polynomial and therefore continuous on \(\mathbb{R} \).
\[f(2) = -5 \] and \(f(3) = 75 \)
Since there is a sign change on \([2, 3]\), there is a root in \((2, 3)\) where \(f(x) = 0 \).

b) \(x^2 = \sqrt{x+1} \), \((1, 2)\)
\[f(x) = x^2 - \sqrt{x+1} \] is continuous for \(x > -1 \) so I VT say there is a root to \(x^2 - \sqrt{x+1} = 0 \) if there is a sign change.
\[f(1) = 1^2 - \sqrt{1+1} = 1 - \sqrt{2} < 0 \] and \(f(2) = 2^2 - \sqrt{2+1} = 4 - \sqrt{3} > 0 \) so \(f(x) = x^2 - \sqrt{x+1} = 0 \) has a root on \((1, 2)\).

Example: Use the Intermediate Value Theorem to show that there is a positive number \(c \) such that \(c^2 = 2 \).

In which of the intervals below does \(y = -x^3 + 4x^2 - 5x + 3 \) have a root?
(A) \([-1, 0]\) (B) \([0, 1]\) (C) \([1, 2]\) (D) \([2, 3]\) (E) None of these contain a root.

\[y(-1) = -(-1)^3 + 4(-1)^2 - 5(-1) + 3 = 13 \]
\[y(0) = 3 \]
\[y(1) = 1 \]
\[y(2) = 1 \]
\[y(3) = -3 \]