1.3 Vector Functions

Parametric Curves: Sometimes, instead of representing a curve using just x and y, it is more convenient to use **parametric equations** using a parameter such as t. This means that the values of x and y are defined as functions of this parameter, $x(t)$ and $y(t)$.

Example: Sketch the curve represented by the parametric equations $x = -3t + 1$, $y = 2t - 1$.

If given a set of parametric equations, it may be useful to convert back into a Cartesian equation (using x and y only). In order to do this, you must eliminate the parameter. How?

1. If possible, solve one of the parametric equations for t and use substitution.

2. If the parametric equations involve trig functions, use a trig identity, often $\sin^2 \theta + \cos^2 \theta = 1$.

Example: Eliminate the parameter from the previous example and write a Cartesian equation for the curve.

Sometimes, there may be a restriction on the values of t or the values of x and y may have bounds you need to watch out for.

If in the previous example, $x = -3t + 1$, $y = 2t - 1$, we also had the restriction $-1 \leq t < 2$, what does the curve look like?
Example: Eliminate the parameter to find a Cartesian equation for the following curves, sketch a graph, and describe the direction of motion as t increases.

(a) $x = \sqrt{t}, \quad y = 2 - t$

(b) $x = 3 + \sin \theta, \quad y = 2 + \cos \theta$

Vector Functions: We can define vector functions using these parametric equations by $\mathbf{r}(t) = <x(t), y(t)>$. It is called a **vector function** because it takes values of t and produces vectors. These vectors are tracing out the curve.
Example: Sketch the curve represented by the vector function \(\mathbf{r}(t) = (4 \cos t) \mathbf{i} + (\sin t) \mathbf{j} \), \(0 \leq t \leq \pi \).

Example: The position of an object after \(t \) seconds is modeled by the vector function \(\mathbf{r}(t) = < t - 2, t^2 + 1 > \).

1. What is the position of the object at time \(t = 6 \)?

2. At what time is the object at position \((1, 10)\)?

3. Does the object pass through the point \((7, 50)\)?

4. Find an equation in \(x \) and \(y \) whose graph is the path of the object and sketch the graph.
Vector Equation of a Line: If \(P_0(x_0, y_0) \) is a point on the line with position vector \(\mathbf{r}_0 \) and \(\mathbf{v} \) is a vector parallel to a line, then the vector equation of the line is \(\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v} \).

Parametric equations of the line that passes through the point \(P(x_0, y_0) \) and is parallel to the vector \(<a, b> \) are given by

\[
x = x_0 + at, \quad y = y_0 + bt
\]

Example: Find a vector equation of the line that passes through the point \((-1, 3)\) and is parallel to the vector \(\mathbf{a} = <5, 6> \). What is the slope of this line?

Example: Find parametric equations for the line that passes through the point \((-1, 3)\) and is perpendicular to the vector \(\mathbf{a} = <5, 6> \). What is the slope of this line?
Example: Find a vector equation and parametric equations for the line that passes through the points \((2, 5)\) and \((-1, 7)\).

Determine whether the lines \(r_1(t) = (-1 - 2t)i + (2 + t)j\) and \(r_2(s) = (5 + 3s)i + (3 + 6s)j\) are parallel, perpendicular, or neither. If they are not parallel, find the point of intersection.