1. Solve the following triangle: \(a = 9, b = 7, c = 4 \)

2. A man goes for a jog. He starts out from his house going N 85° W for 3 miles. He then changes to a direction of N 12° W and jogs in this direction for 5 miles.
 (a) How far from his house is he at this point?
 (b) What bearing should he head in to get back to his house?

3. Simplify the following expression completely: \(\frac{\sec u - \tan u}{\csc u + 1} \)

4. Substitute \(x = 4 \sin \theta \) into the expression \(\frac{x^2}{\sqrt{16 - x^2}} \) and simplify. (Assume that \(\theta \) is in Quadrant I.)

5. Use Addition or Subtraction Formulas to evaluate the following.
 (a) \(\cos 165° \)
 (b) \(\sin(-\frac{5\pi}{12}) \)
 (c) \(\left(\frac{\tan 62° - \tan 17°}{1 + \tan 62° \tan 17°} \right) (\cos 39° \cos 21° - \sin 39° \sin 21°) \)

6. Given that \(\csc x = \frac{3}{2} \) and that \(x \) is in Quadrant II, find \(\sin 2x, \cos 2x, \) and \(\tan 2x \).

7. Use a Half-Angle Formula to evaluate \(\sin 75° \).

8. Given that \(\tan x = \frac{5}{2} \) and that \(180° < x < 270° \), find \(\sin \frac{x}{2}, \cos \frac{x}{2}, \) and \(\tan \frac{x}{2} \).

9. Use a Sum-to-Product Formula to evaluate \(\cos 105° + \cos 15° \).

10. Use a Product-to-Sum Formula to evaluate \(\sin 172.5° \sin 52.5° \).

11. Verify (prove) the following identities.
 (a) \(\frac{1 + \sec x}{\tan x} - \frac{\tan x}{1 + \sec x} = 2 \cot x \)
 (b) \(\frac{\cot(-t) + \tan(-t)}{\tan(\frac{\pi}{2} - t)} = -\sec^2 t \)
 (c) \(\tan \left(\frac{\pi}{2} - u \right) = \cot u \)
 (d) \(\frac{2(\tan x - \cot x)}{\tan^2 x - \cot^2 x} = \sin 2x \)
 (e) \(\sin^2 3x \cos^2 3x = \frac{1}{8}(1 - \cos 12x) \)
 (f) \(\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1 \)
 (g) \(\frac{\sin 12x}{\sin 11x + \sin x} = \frac{\cos 6x}{\cos 5x} \)

 Not all instructors may have covered the following two questions.

12. Find the area of the triangle with \(a = 5, b = 10, c = 7 \).

13. Write the following in terms of sine only. \(-2 \sin x - 2\sqrt{3} \cos x\)