Math 150 Week in Review 3 Problem Set

1. Find the equation of the line that
 (a) passes through the y-intercept of the line $-2x + 3y = 9$ and is parallel to the line $7x - 4y = 6$.
 (b) passes through the x-intercept of the line $3x - 8y = 12$ and is perpendicular to the line $x = 3$.

2. Suppose that the relationship between the cost of utilities and the average temperature in a month is linear. If the average temperature in a month is 96°, your utilities bill is $100. If the average temperature in a month is 81°, your utilities bill is $75.
 (a) Find an equation that expresses the cost of your utilities, C, in terms of the average temperature, T, in any given month.
 (b) How much will your utilities bill increase if the average temperature in the current month is 6° higher than the average temperature last month?

3. Find an equation of the perpendicular bisector of the line segment joining the points $(-1, 2)$ and $(4, 3)$.

4. Determine whether the following equations define y as a function of x.
 (a) $x^2 + y^2 = 16$
 (b) $x^3y + 4y = 12$
 (c) $y^3 - x = 1$

5. Find the domains of the following functions.
 (a) $f(x) = \frac{x^3}{\sqrt{x^2 - 9}}$
 (b) $f(x) = \frac{\sqrt{x^2 - 6x - 16}}{x^2 + 4x - 21}$

6. Let $f(x) = \frac{x^2 + 1}{2 - x}$. Evaluate the following.
 (a) $f(\frac{1}{2})$
 (b) $f(-x^2)$

7. Consider the function:
 $f(x) = \begin{cases}
 -\frac{1}{2}x + 2 & \text{if } x \leq -1 \\
 x^2 & \text{if } -1 < x \leq 1 \\
 3 & \text{if } 1 < x < 4
 \end{cases}$
 (a) Graph the function.
 (b) What are the domain and range of f?
 (c) On what intervals is f increasing? decreasing?

8. Graph the function $f(x) = |x^2 - 4|$ by plotting points.
9. Graph the function \(f(x) = x^4 - 5x^3 - 3x^2 + 17x - 10 \) using a graphing calculator.

 (a) What is the range of this function? (Round decimals to 4 places.)
 (b) On what intervals is \(f \) increasing? decreasing? (Round decimals to 4 places.)

10. Find the average rate of change for the following functions on the given interval.

 (a) \(f(x) = \sqrt{x + 8} \) from \(x = -4 \) to \(x = 1 \)
 (b) \(f(x) = x^2 + 2x - 4 \) from \(x = 2 \) to \(x = 2 + h \)
 (c) \(f(x) = \frac{5}{x-4} \) from \(x = a \) to \(x = a + h \)

11. Suppose an object is launched into motion. After 10 seconds, the object has traveled 220 feet. After 15 seconds, the object has traveled a total of 450 feet.

 (a) What was the object’s average speed during the first 10 seconds?
 (b) What was the object’s average speed during the last 5 seconds?

12. If the distance in feet an object has traveled after \(t \) seconds is modeled by the function \(f(t) = t^3 + 6t \), then what is the object’s average speed from \(t = a \) to \(t = a + h \)?