Chapter 5, continued

5.3 Trigonometric Graphs

Definition: A function f is called periodic if it repeats itself over and over. Mathematically, there is a positive number p such that $f(t + p) = f(t)$ for every t.

The smallest length p that is repeated is called the period of f.

Then, every interval of length p of the graph of f is one complete period of f. The graph repeats itself every interval of length p.

Both sine and cosine are periodic functions with period 2π.

\[
\sin(t + 2\pi) = \sin t \\
\cos(t + 2\pi) = \cos t
\]

Sketch the graph of $f(t) = \sin t$.

Sketch the graph of $f(t) = \cos t$.

1
Once again, we can use transformations on these graphs to find other trig graphs. In general, it is only necessary to graph one complete period.

Sketch the graph of \(f(t) = -2 \sin t + 1 \).

The **amplitude** of a sine or cosine function is the height of the curve, measured from the center of the graph.

The sine and cosine curves

\[
y = a \sin kx \quad \text{and} \quad y = a \cos kx \quad (k > 0)
\]

have amplitude \(|a|\) and period \(\frac{2\pi}{k}\).

Remember that if \(0 < k < 1\), then the graph will be stretched horizontally, and if \(k > 1\), then the graph will be shrunk horizontally.

Find the amplitude and period of the functions below and graph one complete period.

\(y = 4 \sin 2x \)

\(y = 5 \cos \frac{1}{4}x \)
The sine and cosine curves

\[y = a \sin k(x - b) \quad \text{and} \quad y = a \cos k(x - b) \quad (k > 0) \]

have amplitude \(|a|\), period \(\frac{2\pi}{k}\), and phase shift \(b\).

Find the amplitude, period, and phase shift of the functions below and describe how they would be graphed.

\[y = 2 \sin 3(x - \frac{\pi}{3}) \]

\[y = 3 \cos(4x + \pi) \]

5.4 More Trigonometric Graphs

The functions tangent and cotangent have period \(\pi\).

\[\tan(x + \pi) = \tan x \quad \text{and} \quad \cot(x + \pi) = \cot x \]

Recall that tangent is not defined at \(\frac{\pi}{2}\) or at \(-\frac{\pi}{2}\), (or \(\frac{\pi}{2} + n\pi\) for any integer \(n\)). Thus the graph of tangent has vertical asymptotes at these values.

\[\tan x \rightarrow \infty \quad \text{as} \quad x \rightarrow \frac{\pi}{2}^- \]

\[\tan x \rightarrow -\infty \quad \text{as} \quad x \rightarrow \frac{\pi}{2}^+ \]

Sketch the graph of \(y = \tan x\).
Cotangent is not defined at $n\pi$ for any integer n. The graph of cotangent has vertical asymptotes at these values.

$$\cot x \to \infty \text{ as } x \to 0^+$$

$$\cot x \to -\infty \text{ as } x \to \pi^-$$

Sketch the graph of $y = \cot x$.

The functions $y = a \tan kx$ and $y = a \cot kx$ ($k > 0$) have period $\frac{\pi}{k}$.

Find the periods of the following functions and describe how the function would be graphed.

$y = \tan\left(\frac{1}{2}x + \frac{\pi}{8}\right)$

$y = \cot 2\left(x - \frac{3\pi}{4}\right)$
The functions cosecant and secant have period 2π.

$$\csc(x + 2\pi) = \csc x \text{ and } \sec(x + 2\pi) = \sec x$$

Use the facts that $\csc x = \frac{1}{\sin x}$ and $\sec x = \frac{1}{\cos x}$ to sketch the graphs of $y = \csc x$ and $y = \sec x$.

The functions $y = a \csc kx$ and $y = a \sec kx$ ($k > 0$) have period $\frac{2\pi}{k}$ (since they are reciprocals of sine and cosine).

Find the periods of the following and describe how the function would be graphed.

$y = 5 \sec 2\pi x$

$y = \frac{1}{2} \csc(2x - \frac{\pi}{3})$