1. Let \(x \) be the number of days Walter does his chores exceptionally well. Then \(10 - x \) is the number of days he did not do them exceptionally well. He received a total of \(36 = 5x + 3(10 - x) = 30 + 2x \) dollars, hence \(x = 3 \).

2. Let \(u \) be the man’s usual speed, and let \(v \) be the rate of the stream’s current. Then \(15/(v + u) = 15/(v - u) - 5 \) and \(15/(2v + u) = 15/(2v - u) - 1 \), which is equivalent to

\[
\begin{align*}
15(v - u) &= 15(v + u) - 5(v^2 - u^2) \\
15(2v - u) &= 15(2v + u) - (4v^2 - u^2)
\end{align*}
\]

Multiply the first equality by 4 and subtract it from the second:

\[
6u = v^2 - u^2
\]

\[
30u = 4v^2 - u^2
\]

hence \(u = 2 \) (or \(u = 0 \)). Then from the first equality, we get \(16 = v^2 \), i.e., \(v = 4 \). (If \(u = 0 \), then \(v = 0 \), which is absurd.)

3. Let \(a_n \) be the number of unit squares in figure \(n \). Then \(a_n - a_{n-1} = 4n \), hence \(a_n = 1 + 4 + 8 + \cdots + 4n = 1 + 4(1 + 2 + \cdots + n) = 1 + 2n(n + 1) = 2n^2 + 2n + 1 \). It follows that \(a_{100} = 20000 + 200 + 1 = 20201 \).

4. Let \(a \) be the length of the side of the large square, and let \(x \) be the width of the rectangles. Then perimeter of each of the rectangles is \(2x + 2(a - x) = 2a = 14 \), hence \(a = 7 \), so that the area of the large square is 49.

5. The system is equivalent to

\[
\begin{align*}
2^x - x - y &= 2^3 \\
3^x + 2^y - 5y &= 3^5
\end{align*}
\]

or to

\[
\begin{align*}
x - y &= 3 \\
2x - 3y &= 5
\end{align*}
\]

Hence the solution is \(x = 4, y = 1 \).

6. \(51 + 61 + \cdots + 391 = 35(51 + 391)/2 = 35 \cdot 221 = 7735 \)

7. It is equal to \(-1)^{100} + 1 = 2\).

8. If they have a common solution, then \(x^2 + y^2 - 16 = x^2 - 3y + 12 \), hence \(y^2 - 16 = -3y + 12 \), so that \(y^2 + 3y - 28 = 0 \). Solutions of this equation are \(y = 4 \) and \(y = -7 \). Then the first equation is either \(x^2 = 16 - y^2 = 16 - 16 = 0 \), or \(x^2 = 16 - 49 = -33 \). There is no real solution in the second case, hence the only value of \(y \) for which there is a real solution is \(y = 4 \).

9. Note that \(\sin x = \sin 2\pi/5 = \sin 32\pi/5 = \sin 16x \), \(32\pi/5 = 6\pi + 2\pi/5 \). Multiply the expression by \(16 \sin x \):

\[
(16 \sin x \cos x \cdot \cos 2x \cos 4x \cos 8x) = (8 \sin 2x \cos 2x \cdot \cos 4x \cos 8x) = (4 \sin 4x \cos 4x \cdot \cos 8x) = 2 \sin 8x \cos 8x = \sin 16x.
\]

It follows that our expression is equal to \(\frac{1}{16} \).

10. Consider \(\triangle BOA \) and \(\triangle COD \). We have \(\angle BOA = \angle COD \), and \(BO : OC = 4 : 3 = 8 : 6 = AO : OD \). It follows that they are similar, and that \(AB : CD = 4 : 3 \). Hence \(CD = 18/4 = 9/2 \).

11. We have \(\sin^2 2x = 4 \sin^2 x \cos^2 x = 4 \sin^2 x(1 - \sin^2 x) \). Denote \(y = \sin^2 x \). Then the original equation becomes \(2y + 4y(1 - y) = 2 \), or \(2y^2 - 3y + 1 = 0 \). Its solutions are \(y = 1 \) and \(y = 1/2 \). It follows that \(\sin x = \pm 1 \) or \(\sin x = \pm 1/\sqrt{2} \). Hence, solutions of the equation are \(\pi/4, \pi/2, 3\pi/4, 5\pi/4, 3\pi/2, 7\pi/4 \).
12. Our number is equal to $1100A + 11B = 11(100A + B) = 11(99A + A + B)$. Since it is a perfect square, and divisible by 11, $A + B$ is divisible by 11. But this means that $A + B = 11$, and our number is equal to $11(99A + 11) = 121(9A + 1)$. It follows that $9A + 1$ is a perfect square. Checking all 9 possibilities for A, we see that the only case when $9A + 1$ is a perfect square is $A = 7$. Then $B = 4$, and our number is 7744.

13. Since BQ is 42°, $\angle BAQ = 21^\circ$; and since $QD = 38^\circ$, $\angle DCQ = 19^\circ$. It follows that $\angle PAQ = 159^\circ$, $\angle PCQ = 161^\circ$. Then $\angle APC + \angle AQC = 360^\circ - 159^\circ - 161^\circ = 40^\circ$.

14. Solve the system
\[
\begin{align*}
(x^3 + y^3)(x^2 + y^2) &= 2 \\
x + y &= 1
\end{align*}
\]
We have $x^3 + y^3 = (x+y)(x^2 - xy + y^2)$, hence we can replace the first equation by $(x^2 - xy + y^2)(x^2 + y^2) = 2$.
Denote $x^2 + y^2 = s$, $xy = p$. Then the second equation implies $s + 2p = 1$, and the first equation can be written $(s - p)s = 2$. Replacing s by $1 - 2p$ in the second equation, we get $(1 - 3p)(1 - 2p) = 2$, or $6p^2 - 5p - 1 = 0$. Solutions of this equation are $p = 1$ and $p = -1/6$. The corresponding values of s are -1 and $1 + 1/3 = 4/3$. The first case is impossible, hence we get
\[
\begin{align*}
xy &= -1/6 \\
x + y &= 1
\end{align*}
\]
It follows that x and y are roots of the polynomial $t^2 - t - 1/6$. Therefore, they are equal to
\[
\frac{1 + \sqrt{1 + 2/3}}{2} = \frac{1}{2} + \frac{\sqrt{15}}{6}, \quad \frac{1}{2} - \frac{\sqrt{15}}{6}
\]
in some order.

Note that another solution might lead to the answer written in the form
\[
\sqrt{\frac{4 + \sqrt{15}}{6}}, \quad \sqrt{\frac{4 - \sqrt{15}}{6}}.
\]

15. There are $s - 1$ pairs of positive integers a, b such that $a + b = s$. Therefore, the number of pairs of non-zero numbers such that $|x| + |y| \leq 100$ is equal to $4(1 + 2 + \cdots + 99) = 200 \cdot 99 = 19800$. Among pairs of integers such that $|x| + |y| \leq 100$ there are 200 such that $x = 0$ and $y \neq 0$, and 200 such that $x \neq 0$ and $y = 0$. The only remaining case is the pair $x = 0, y = 0$. In total we get $19800 + 400 + 1 = 20201$.

Another solution is just to use the answer in Problem 3.

16. Divide it by 2:
\[1/2 \sin \alpha - \sqrt{3}/2 \cos \alpha = \cos(\pi/3) \sin \alpha - \sin(\pi/3) \cos \alpha = \sin(\alpha - \pi/3).
\]
The minimum value of $\sin(\alpha - \pi/3)$ is -1, hence the minimal value of the original expression is -2.

17. $\log_5 n$ is rational if and only if n is a power of 2. It follows that the sum in question is equal to $\frac{1}{5}(0 + 1 + 2 + \cdots + 10) = \frac{55}{2}$.

18. Note that $3 + 2\sqrt{2} = 1 + 2\sqrt{2} + 2 = (1 + \sqrt{2})^2$, and $3 - 2\sqrt{2} = (\sqrt{2} - 1)^2$. It follows that the number in question is equal to
\[1 + \sqrt{2} - \sqrt{2} + 1 = 2.\]

19. If equation of the line is $y = ax + b$, then the x-coordinates of the points are roots of the polynomial $2x^4 + 7x^3 + 3x - 5 - ax - b = 2x^4 + 7x^3 + (3 - a)x + (-5 - b)$. Sum of roots of this polynomial is $-7/2$.

\[2\]
20. $\angle MOB = \angle OBC = \angle OBM$, since MN is parallel to BC, and BO bisects $\angle CBA$. It follows that \(\triangle BMO \) is isosceles, so that $OM = MB$. We prove in the same way that $ON = NC$. It follows that perimeter of \(\triangle AMN \) is equal to $AB + AC = 12 + 18 = 30$.

21. We can take $P(n) = n + 3$ and $Q(n) = -n - 2$, since

\[
(n + 3)f(n + 1) - (n + 2)f(n) = (n + 3)(f(n) + (n + 1)!)) - (n + 2)f(n) = f(n) + (n + 1)! + (n + 1)! + (n + 2)! = f(n + 2).
\]