1. Now $x^2 + (1/x^2) = (x + (1/x))^2 - 2 = 3^2 - 2 = 7$ and $x^4 + (1/x^4) = (x^2 + (1/x^2))^2 - 2 = 7^2 - 2 = 47$.

2. If the edge increases from x to $1.3x$, then the surface area increases from $6x^2$ to $6(1.69x^2) = 10.14x^2$. This is an increase of
\[
\frac{10.14x^2 - 6x^2}{6x^2} \times 100 = \frac{4.14}{6} \times 100 = 69\%.
\]

3. Let x be his original sum of money in dollars. Then $x - \frac{1}{3}x - \frac{1}{5}(x - \frac{1}{3}x) = 24$ or $\frac{4}{5}x = 24$. Thus, $x = 54$.

4. Let x be the height of the shrub in feet. Then $15/20 = x/4$ or $x = 3$.

5. Now
\[
\frac{x^4 - 3ax^2 + (5a - 2)x - 16}{x - 2} = x^3 + 2x^2 + (4 - 3a)x + (6 - a) + \frac{-2a - 4}{x - 2}.
\]
So $x - 2$ is a factor if $-2a - 4 = 0$ or $a = -2$.

6. Let the side length of the rhombus equal 1. Then its altitude equals $\sqrt{3}/2$, and hence this also equals its area, and equals the diameter of the inscribed circle, which hence has area $3\pi/16$. The desired ratio is $8\sqrt{3}/(3\pi)$.

7. Notice that $(n + 1)! - n! = (n + 1)n! - n! = n \cdot n!$. Thus,
\[
(2! - 1!) + (3! - 2!) + \cdots + (8! - 7!) = 8! - 1! = 40320 - 1 = 40319,
\]
since $2!$, $3!$, \ldots, $7!$ cancel.

8. The right triangle in the diagram shows that $r^2 = 1 + (2 - r)^2$, which gives $4r = 5$ or $r = 5/4$.

9. Since \(32 < 36 \), \(2^{35} = (2^5)^7 < (6^2)^7 = 6^{14} \). Since \(125 < 128 \), \(5^{15} = (5^3)^5 < (2^7)^5 = 2^{35} \).

10. The function \(f(x) \) is quadratic and the coefficient of \(x^2 \) is \(1 + 1 - 1 + 1 + 1 = 2 > 0 \), so the graph of \(f(x) \) is an upward-pointing parabola, and the minimum is attained at its vertex. The function is also symmetric about \(x = 6 \), so the vertex must be at \(x = 6 \). We easily compute \(f(6) = 1 + 1 - 4 - 4 + 9 + 9 = 2(1 + 9 - 4) = 12 \).

11. Let \(\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = r \). Then \(\frac{xyz}{abc} = r^3 \), \(x = ra \), \(y = rb \) and \(z = rc \). It follows that \(x + y = r(a + b) \), \(y + z = r(b + c) \) and \(z + x = r(c + a) \), so that \(\frac{x + y}{a + b} = \frac{y + z}{b + c} = \frac{z + x}{c + a} = r \). The given expression is equal to \(r^3(1/r^3) = 1 \).

12. \((2^x - 3^y)(2^x + 3^y) = 55\) implies either \(2^x - 3^y = 5 \) and \(2^x + 3^y = 11 \), or \(2^x - 3^y = 1 \) and \(2^x + 3^y = 55 \). The first case says \(2^x = 8 \) and \(3^y = 3 \) while the second case says \(2^x = 28 \) and \(3^y = 27 \). The first gives \((x, y) = (3, 1) \), while the second does not give an integer value for \(x \).

13. Multiplying one equation by the other, we have \(xy + 4 + \frac{4}{xy} = 8 \). This may be rewritten as \(0 = (xy)^2 - 4xy + 4 = (xy - 2)^2 \). Hence \(xy = 2 \).

14. For \(a \neq 1 \),
\[
1 + a + a^2 + \cdots + a^{2010} = \frac{a^{2011} - 1}{a - 1} = \frac{2a - 2}{a - 1} = 2.
\]

15. Let \(\alpha = 3^\sqrt{9 + 4\sqrt{5}} + 3^\sqrt{9 - 4\sqrt{5}} \). Since \((9 + 4\sqrt{5})(9 - 4\sqrt{5}) = 1 \), we obtain
\[
\alpha^3 = (9 + 4\sqrt{5}) + 3\sqrt{9 + 4\sqrt{5}} + 3\sqrt{9 - 4\sqrt{5}} + 9 - 4\sqrt{5} = 18 + 3\alpha.
\]
Thus \(\alpha \) is a root of \(x^3 - 3x - 18 = 0 \), of which \(x = 3 \) is clearly a root. In fact, \(x^3 - 3x - 18 = (x-3)(x^2+3x+6) \) and so \(3 \) is the only real root.

16. To get the largest sum, we want the given length to be one of the legs, not the hypotenuse. If one leg has length \(A \) (in our case an integer), then we want to maximize \(x + y \), where \(x \) and \(y \) are integers satisfying \(A^2 + x^2 = y^2 \). Since \(A^2 = y^2 - x^2 = (y-x)(x+y) \), to maximize \(x + y \) we set \(y-x = 2 \) (the choice \(y-x = 1 \) will result in maximizers \(x \) and \(y \) being nonintegers). Now \(A^2 = 2(x+y) \) and then the sum of the side lengths will be \(A + x + y = A + \frac{A^2}{2} = A \left(1 + \frac{A}{4}\right) = (2010)(1006) = 2,022,060 \). We obtain \(x = \frac{A^2}{2} - 1 = 1,010,024 \) and \(y = x + 2 = 1,010,026 \).

2
17. We want to know when
\[a + \sqrt{b} + \frac{1}{a + \sqrt{b}} = a + \frac{b + 1 + a\sqrt{b}}{a + \sqrt{b}} = 2a + \frac{b + 1 - a^2}{a + \sqrt{b}} \]
is an integer. Clearly, if \(a^2 = b + 1 \), then the last expression above is an integer. Suppose the last fraction above is an integer but \(a^2 \neq b + 1 \). Setting the fraction equal to the integer \(k \) and solving for \(\sqrt{b} \), we obtain that \(\sqrt{b} = (b + 1 - a^2 - ka)/k \) (and note that \(k \neq 0 \)). Thus, \(\sqrt{b} \) is a rational number. Since \(b \) is a positive integer, this can only happen if \(b \) is the square of an integer so that \(\sqrt{b} \) is itself a positive integer. This means that \(a + \sqrt{b} \) is an integer and, in fact, at least 2. Hence, \(a + \sqrt{b} \) will be an integer but its reciprocal will not be so that their sum will not be. In other words, \(a + \sqrt{b} \) and its reciprocal sum to an integer precisely when \(a^2 = b + 1 \). The conditions \(1 \leq a \leq 100 \) and \(1 \leq b \leq 100 \) together with \(a^2 = b + 1 \) imply \(2 \leq a \leq 10 \) and, for each such \(a \), there is a unique \(b \) such that the sum of \(a + \sqrt{b} \) and its reciprocal is an integer. The answer is therefore 9.

18. Observe that
\[\frac{a}{b} = \frac{1997}{1998} + \frac{1999}{n} = \frac{1997n + 1998 \times 1999}{1998n} . \]
Since \(a \) is divisible by 1000, \(a \) is even. It follows that \(n \) must be even. We write \(n = 2m \) and simplify the above expression for \(a/b \) to obtain
\[\frac{a}{b} = \frac{1997m + 999 \times 1999}{1998m} . \]
Since \(a \) is even, we see that \(m \) must be odd. Since 5 divides \(a \), we also see that \(m \) cannot be divisible by 5. So we consider \(m \) now having no prime divisors in common with 10. Observe that the denominator on the right-hand side above is divisible by 2 and not 4. Also, this denominator is not divisible by 5. Thus, in order for \(a \) to be divisible by 1000, it is necessary and sufficient for \(1997m + 999 \times 1999 \) to be divisible by 2000. We solve for \(m \) by working modulo 2000. We seek \(m \) for which
\[0 \equiv 1997m + 999 \times 1999 \equiv -3m + 999(-1) \pmod{2000} \]
which is equivalent to
\[m \equiv -333 \equiv 1667 \pmod{2000} . \]
(Here, we have used that 3 and 2000 have no common prime divisors so that division by 3 in a congruence modulo 2000 is permissible.) Note that \(m \equiv 1667 \pmod{2000} \) implies that \(m \) and 10 have no common prime divisors. Hence, the condition \(m \equiv 1667 \pmod{2000} \) is a necessary and sufficient condition for \(n = 2m \) to result in a fraction \(a/b \) as in the problem with \(a \) divisible by 1000. Therefore, the smallest such positive integer is \(2 \times 1667 = 3334 \). The sum of its digits is 13.